
ar
X

iv
:2

50
6.

14
97

2v
1 

 [
m

at
h.

D
G

] 
 1

7 
Ju

n 
20

25

ON THE PARALLELS BETWEEN MINIMAL SURFACES AND
EINSTEIN FOUR-MANIFOLDS

A PREPRINT

Mia S. L. Beard
Mathematical Institute
University of Oxford

Woodstock Rd, Oxford OX2 6GG
mia.beard@worc.ox.ac.uk

ABSTRACT

Minimal surfaces and Einstein manifolds are among the most natural structures in differential
geometry. Whilst minimal surfaces are well understood, Einstein manifolds remain far less so.
This exposition synthesises together a set of parallels between minimal surfaces embedded in an
ambient three-manifold, and Einstein four-manifolds. These parallels include variational formulations,
topological constraints, monotonicity formulae, compactness and epsilon-regularity theorems, and
decompositions such as thick/thin and sheeted/non-sheeted structures.
Though distinct in nature, the striking analogies between them raises a profound question: might there
exist circumstances in which these objects are, in essence, manifestations of the same underlying
geometry? Drawing on foundational results such as Jensen’s theorem, Takahashi’s theorem, and a
conjecture of Song, this work suggests a bridge between the two structures. In particular, it shows
that certain Einstein four-manifolds admit a minimal immersion into a higher-dimensional sphere.
A key example of this is the embedding of CP2 into S7 via the Veronese map, where it arises as a
minimal submanifold.

Keywords Minimal surfaces · Einstein manifolds · Differential geometry · Geometric analysis

1 Introduction

The principal aim of this exposition is to demonstrate that a collection of fascinating parallels exist between Einstein
four-manifolds and minimal surfaces embedded in ambient three-manifold. As we shall see, these connections intersect
differential geometry, geometric analysis, and topology.

In this introductory chapter, we gently develop the intuition behind each of these structures, so that the reader may fully
appreciate the depth and elegance of the similarities.

1.1 Minimal Surfaces

Minimal surfaces are among the oldest and most fundamental objects in differential geometry. For over 250 years, they
have fascinated mathematicians from Euler to Lagrange to Plateau. Defined as surfaces that locally minimise area, they
arise as critical points of a variational principle which is satisfied precisely when the mean curvature vanishes across the
entire surface. Physically, they manifest as soap films formed when a wire contour is dipped into a soapy solution, as
demonstrated by an experiment famously conducted by Plateau in the 19th century. This led to the Plateau problem,
which seeks the surface of least area spanning a given closed boundary [Plateau, 1873], which remains central to the
study of minimal surfaces today.

Definition 1 (Minimal surface). A surface in R3 is said to be minimal if its mean curvature vanishes at every point.
That is:
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H =
1

2
(k1 + k2) = 0 ⇐⇒ k1 = −k2, (1)

where k1 and k2 denote the principal curvatures of the surface [Callens and Zadpoor, 2018].

This geometric condition represents just one of several equivalent characterisations of minimal surfaces. Analytically,
if a surface is expressed as the graph of a function u(x, y), then the condition of vanishing mean curvature yields the
minimal surface equation:

(1 + u2
x)uyy − 2uxuyuxy + (1 + u2

y)uxx = 0 (2)

From the variational approach, minimal surfaces arise as critical points of the area functional:

A =

∫
M

dA, (3)

where dA denotes the induced area element on the surface M .

Classical examples of minimal surfaces include the catenoid, Enneper’s surface, Bour’s minimal surface, and the gyroid.
Such objects arise not only in mathematics, but also in architecture, crystal geometry, and material sciences.

Figure 1: The catenoid Figure 2: Enneper’s surface

Figure 3: Bour’s minimal surface
Figure 4: The gyroid (an infinitely connected
periodic minimal surface)

Figure 5: Examples of classical minimal surfaces.

1.2 Einstein Manifolds

Einstein manifolds arise naturally within Riemannian geometry, which is the branch of differential geometry where we
endow smooth manifolds with a metric structure that allows us to measure curvature, angle, and distance 1

1See [Carmo, 1993] for a full treatment of Riemannian geometry.
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An Einstein manifold is a Riemannian manifold whose Ricci curvature tensor is proportional to the metric tensor,
offering a natural generalisation of constant curvature. These manifolds gain physical interpretation in general relativity,
where the metric serves as a solution to the vacuum Einstein field equations. We present the following definition, taken
from [Besse, 1987]:
Definition 2 (Einstein manifold). A Riemannian manifold (M, g) is said to be Einstein if there exists a constant λ ∈ R
such that:

Ricg = λg, (4)

where Ricg denotes the Ricci curvature tensor of g.

Our knowledge of Einstein manifolds can be succinctly organised into dimensional cases.

In dimension two, there is the most elementary manifestation: a Riemannian manifold is Einstein if and only if it has
constant Gaussian curvature. These are locally isometric to the sphere, the Euclidean plane, or the hyperbolic plane.

In dimension three, a Riemannian metric is Einstein if and only if it has constant sectional curvature. This requires the
manifold’s universal cover to be diffeomorphic to either the three-sphere S3, Euclidean space R3, or hyperbolic space
H3. This aligns with Thurston’s geometrisation conjecture [Thurston, 1982], now a theorem [Grisha, 2002, 2003a,b],
which states that every closed three-manifold can be decomposed into pieces admitting one of eight canonical geometric
structures.

The four-dimensional case is more challenging, with the most viable tool at our disposal being elimination, whereby one
can single out a number of four-manifolds which do not admit Einstein metrics by identifying topological obstructions
to their existence. Chief among these obstructions is the Hitchin-Thorpe inequality [Thorpe, 1969, Hitchin, 1974],
which asserts that any compact, oriented four-manifold satisfying:

|τ(M)| ≤ 2

3
χ(M), (5)

may admit an Einstein metric, while those violating this inequality certainly do not. Here, τ(M) is the signature of the
manifold, and χ(M) is the usual Euler characteristic.

Since we have introduced two fundamental objects in differential geometry, it is worthwhile to formally define each 2:
Definition 3 (Signature of a Manifold). Let M be a closed, oriented, smooth manifold of dimension 4k, for k ∈ N. The
signature τ(M) of M is an integer defined via the intersection form:

QM : H2k(M ;R)×H2k(M ;R) → R, (α, β) 7→ (α ⌣ β, [M ]), (6)

where ⌣ denotes the cup product, and [M ] ∈ H2k(M ;R) is the fundamental class of M .

The signature τ(M) is the number of positive eigenvalues minus the number of negative eigenvalues of a matrix
representing QM [Milnor and Stasheff, 1974, Hirzebruch, 1995, Atiyah and Singer, 1968].

Definition 4 (Euler characteristic). Let M be a smooth manifold with a finite CW-complex structure, with ck the number
of k-cells. The Euler characteristic χ(M) is given by

χ(M) =

dimM∑
k=0

(−1)kck. (7)

[Hatcher, 2002]

Examples of known four-dimensional Einstein manifolds include the 4-sphere S4, the complex projective plane CP2

(with the Fubini-Study metric 13), the K3 surface with a Ricci-flat Kähler metric, and the Eguchi-Hanson metric.

In higher dimensions, the knowledge of topological restrictions to the existence of Einstein manifold is more murkey.
Many manifolds with dimension greater than four admit a negative Einstein metric [Besse, 1987]. When a positive
Einstein metric is required, existence hinges on two more delicate criteria. Myers’ Theorem [Myers, 1941] states that
if a complete Riemannian manifold has Ricci curvature bounded below by a positive constant, then its fundamental

2The recommendation is that the reader consults [Hatcher, 2002] for a more thorough understanding, as these definitions rely on
the fundamentals of algebraic topology.
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group must be finite and its diameter must be bounded. Thus, any manifold admitting a positive Einstein metric must
also have finite fundamental group, immediately excluding many topological types. The scalar curvature also plays a
crucial role, often investigated via the Yamabe problem [Yamabe, 1960], which considers whether a conformal class
contains a metric of constant positive scalar curvature. Examples of Einstein manifolds in these higher dimensions is
the Calabi-Yau manifolds (an important manifold in string theory), a quintic 3-fold in CP2, and G2 manifolds.

2 The Parallels Between Minimal Surfaces and Einstein Four-Manifolds

The purpose of this chapter is to explore a number of parallels between minimal surfaces embedded within a three-
manifold, and Einstein four-manifolds. These analogies were noted in [Song, 2021], building upon several prior
developments in geometry and analysis. We attempt to articulate each parallel as clearly as possible, providing formal
definitions, proofs where necessary, and referencing the original papers, so that the interested reader may investigate
each idea in more depth, should they so wish.

Let us note that at no point do we claim that these objects are the same, in fact they are distinct and live in different
spaces. However, this distinction makes the parallels even more intriguing.

2.1 Variational Structures

We begin with the most tempting parallel: both minimal surfaces and Einstein metrics arise as critical points of
fundamental variational principles.

Minimal surfaces are critical points of the area functional:

A =

∫
M

dA, (8)

where M is a surface in a Riemannian manifold and dA is the induced area element.

Analogously, Einstein four-metrics are critical points of the Einstein-Hilbert functional, which integrates scalar curvature
over the manifold:

E(g) =
∫
M

Rg volg

(Vol(M, g))1/2
, (9)

where Rg is the scalar curvature associated to the metric g, and dVolg is the Riemannian volume form.

This variational similarity deepens if we consider the geometric flows naturally associated with each structure.

2.1.1 Mean Curvature Flow

Mean Curvature Flow (MCF) is a geometric evolution equation in which a hypersurface deforms over time in the
direction of steepest descent for area. The flow tends to smooth irregularities, but singularities can develop where the
hypersurface pinches off, reflecting changes in the topology.
Definition 5 (Mean Curvature Flow). Let Mt ⊂ R3 be a family of smoothly embedded hypersurfaces depending on
time t. The mean curvature flow is the evolution equation:

∂X

∂t
= −Hν, (10)

where:

• X : Mn × [0, T ) → Rn+1 is a smooth family of immersions

• H is the mean curvature

• ν is the unit normal vector to the hypersurface

[Nunemacher, 2003].

Minimal surfaces correspond to fixed points of this flow.

4
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2.1.2 Ricci Flow

The Ricci flow, introduced by Hamilton in 1982, serves as the intrinsic analogue of MCF for Riemannian metrics. It
deforms a Riemannian metric in the direction of steepest descent for total scalar curvature under appropriate constraints
on the volume, smoothing out curvature irregularities.

Definition 6 (Ricci Flow). Let M be a Riemannian manifold, and g(t) be a one-parameter family of Riemannian
metrics on M . The Ricci flow is the geometric evolution equation:

∂g

∂t
= −2Ric(g(t)), (11)

where Ric(g) is the Ricci curvature tensor of the evolving metric.

[Chow and Knopf, 2011, Brendle, 2010]

Under suitable conditions and normalisation, Einstein metrics can arise as fixed points of this flow.

Both flows share an underlying philosophy: evolve the geometric structure (extrinsically in the case of mean curvature,
and intrinsically in the case of Ricci curvature) toward a state of balance. In both settings, the development of
singularities not only signals the breakdown of smooth evolution, but often reveals deep topological features of the
underlying space.

2.2 Second Variation

We now turn to the second variation of each geometric object, investigating how the respective functionals behave under
second-order deformations. This deepens the narrative developed so far: not only do minimal surfaces and Einstein
metrics arise as critical points of variational principles, but their stability is goverened by elliptic operators whose
spectra encode geometric information, leading to the notion of Morse index.

2.2.1 Minimal Surfaces

Let f : M → N be a minimal immersion of a compact surface M into a Riemannian manifold N . Consider a normal
variation V ∈ Γ(ν(M)), where ν(M) denotes the normal bundle of the immersion and Γ(ν(M)) the space of its
smooth sections. Then the second variation of the area functional takes the form:

δ2A(V, V ) =

∫
M

⟨J V, V ⟩dµ. (12)

Let us briefly define J , which is the Jacobi operator.

Definition 7 (Jacobi Operator). The Jacobi operator is a second-order, elliptic, self-adjoint differential operator acting
on normal vector fields. Its general form is:

J = ∆⊥ + |A|2 +RicN (ν, ν), (13)

where ∆⊥ is the Laplace-Beltrami operator on the normal bundle, A is the second fundamental form of the immersion,
and RicN (ν, ν) is the Ricci curvature of the ambient manifold N in the direction of the unit normal vector field ν
[Fischer-Colbrie and Schoen, 1980].

The Morse index of the minimal surface is defined as the number of negative eigenvalues of J . It measures the maximal
dimension of the subspace of deformations along which the area decreases (the space of unstable directions in the
variational landscape) 3.

2.2.2 Einstein Metrics and the Einstein Index

Let (M4, g) be a compact Einstein four-manifold. A variation of the metric is given by a symmetric (0, 2)-tensor
h ∈ S2(T ∗M). To isolate meaningful variations, we restrict attention to transverse-traceless tensors:

3This is a simplification of what is a rich field, so see [Milnor and Weaver, 1997] for more information.
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TTg =
{
h ∈ S2(T ∗M) | Trg(h) = 0, δgh = 0

}
, (14)

which preserve volume and are orthogonal to conformal transformations.

The second variation of the Einstein-Hilbert functional, restricted to TTg, is governed by the Lichnerowicz Laplacian
[Galloway, 1988]:

∆Lh = ∇∗∇h+ 2R̊h, (15)

where ∇∗∇ is the rough Laplacian, and R̊ is the curvature operator acting on symmetric 2-tensors, defined locally by:

(R̊h)ij = Rikjlh
kl. (16)

The rough Laplacian will appear again later, warranting a formal definition.

Definition 8 (Rough Laplacian). Let ∇X denote the covariant differentiation along the vector field X . For a smooth
section ϕ ∈ Γ(E), , where E is a vector bundle over M , the rough Laplacian is defined as:

∆ϕ = −Trg(∇2ϕ) = −
n∑

i=1

(
∇ei∇eiϕ−∇∇ei

eiϕ
)
, (17)

where {ei} is a local orthonormal frame. The operator ∆ is second-order, elliptic, and self-adjoint.

The index of the Einstein metric is defined as the number of negative eigenvalues of ∆L acting on TTg . It quantifies the
number of volume-preserving deformations that decrease the Einstein–Hilbert functional to second order.

In both settings, the second variation demonstrates a spectral structure intimately tied to the underlying geometry,
nodding towards a deeper variational landscape. The Jacobi operator and Lichnerowicz Laplacian reveal how curvature
controls stability, and their spectra bridge analytic, geometric, and topological domains. The Morse index, in either
context, measures how ‘saddle-like’ a configuration is within its functional landscape. These parallels suggest that not
only the existence, but also the stability of these critical geometric objects is governed by analogous principles.

3 Monotonicity and Local Rigidity

Both minimal surfaces and Einstein manifolds obey natural monotonicity formulae, which constrain the behaviour
of geometric quantities under rescaling. These constraints are not mere technicalities, instead encoding curvature
information and guiding our understanding of local-to-global behaviour in geometric analysis.

3.1 Minimal Surfaces

Let Σ ⊂ N be a minimal surface immersed in a Riemannian 3-manifold N . For any point p ∈ Σ and sufficiently small
r > 0, the function:

r 7→ Area(Σ ∩B(p, r))

πr2
, (18)

is monotone non-decreasing up to curvature correction terms when the ambient space N is not flat. In the Euclidean
case N = R3, the function is strictly monotonic and becomes constant if and only if Σ is a plane near p [Meeks and
Pérez, 2012, Brendle, 2023, White, 2016].

This reflects the second-order minimality condition satisfied by Σ, where the rate of area growth relative to r2 near
a point quantifies how close the surface is to being flat. Thus, it serves as a regularity tool and as a control on local
geometry.

6
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3.2 Einstein Manifolds

Let (M4, g) be an Einstein manifold. Then for any p ∈ M and sufficiently small r > 0, the normalised volume
function:

r 7→ Vol(B(p, r))

r4
, (19)

is almost monotone non-increasing as r → 0, with equality if and only if the metric is locally flat at p. This local volume
comparison reflects the scalar curvature constraints of the Einstein condition and arises from the Bishop-Gromov
volume comparison theorem, which is a foundational result in comparison geometry.

In this context, deviation from constancy in the normalised volume function measures how the Einstein condition
influences volume growth. The result is thus not only a local geometric diagostic, but is also a powerful tool in
compactness and convergence theory, particularly in the Cheeger-Gromov framework for collapsing and compactness.

The presence of monotonicity formulae in both settings illustrates a deeper structural similarity, with each expressing a
local rigidity. Both formulae become equality statements in flat geometry and deviation from monotonicity measures
curvature in a quantifiable way. These monotonicity restrictions thus play a dual role: they regulate geometry and hint
at underlying analytical principles governing stability, regularity, and convergence in geometric flows.

4 Epsilon-Regularity and Energy Thresholds

Epsilon-regularity is an incredibly useful tool in geometric analysis, particularly in the study of geometrical partial
differential equations. Though this tool represents a concept which is rich in analytic formalism, the idea can be
elegantly summarised: if one assumes some weak control on the solution for the equation in question through analytic
tools, then the assumed control can be used to prove a stronger control of the system. That is, when the total curvature
in a region is small enough, one can deduce precise control on the pointwise geometry 4.

4.1 Minimal Surfaces

For minimal surfaces, a classical result due to Choi and Schoen proposes that an embedded minimal surface in a
Riemannian 3-manifold remains regular where the total curvature is sufficiently small, which prevents in regions where
the total curvature is sufficiently small. Below a critical threshold, singularities are ruled out [Haslhofer, 2024].

Theorem 1 (Choi-Schoen). There exist constants ε > 0 and C > 0 such that the following holds. Let Σ be an
embedded minimal surface in a Riemannian 3-manifold N , and let p ∈ Σ. If r > 0 is sufficiently small and:

∫
Σ∩B(p,r)

|A|2 < ε, (20)

then:

sup
Σ∩B(p,r/2)

|A|2 ≤ C

r2
, (21)

where |A| denotes the norm of the second fundamental form of Σ [Choi and Schoen, 1985].

In other words, if a minimal surface does not exhibit excessive curvature in a small region, then we can guarantee that
its curvature remains controlled in an even smaller concentric ball. This provides an essential tool in regularity and
compactness theories for families of minimal surfaces, as well as underpinning several blow-up results.

Proof. We outline the proof of Choi-Schoen’s Theorem using a classical bootstrapping technique, starting from small
L2-control on the second fundamental form, and deriving a pointwise curvature bound.

Let Σ ⊂ N3 be an embedded minimal surface. The second fundamental form A satisfies the Simons inequality:

4The reader is recommended to consult [Tao, 2009] for a more thorough explaination of this
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1
2∆|A|2 ≥ |∇A|2 − C1|A|4 − C2|A|2,

where C1, C2 depend only on a bound for ∥RmN∥C1 in the chosen coordinate patch

Let ϕ ∈ C∞
c (BΣ(p, r)) be a smooth cut-off function satisfying:

0 ≤ ϕ ≤ 1, ϕ ≡ 1 on B(p, r/2), |∇ϕ| ≤ 2

r
.

Multiply Simons inequality by ϕ2 and integrate over Σ:

∫
Σ

ϕ2∆|A|2 ≥
∫
Σ

(
2ϕ2|∇A|2 − 2C1ϕ

2|A|4 − 2C2ϕ
2|A|2

)
,

while integration by parts yields:
∫
Σ

ϕ2∆|A|2 = −
∫
Σ

⟨∇|A|2,∇(ϕ2)⟩ ≤
∫
Σ

4ϕ|∇ϕ||A||∇A|.

Applying the Cauchy-Schwarz and Young inequalities gives:

4ϕ|∇ϕ||A||∇A| ≤ 1
2ϕ

2|∇A|2 + 8
r2 |A|2.

Combining these estimates: ∫
Σ

ϕ2|∇A|2 + C1

∫
Σ

ϕ2|A|4 ≤ C

r2

∫
Σ∩B(p,r)

|A|2.

Note that in particular: ∫
Σ∩B(p,r)

|A|4 ≤ C

r2

∫
Σ∩B(p,r)

|A|2.

The final step is to apply a Moser-type iteration argument, which is a bootrastrapping process for elliptic PDEs. By the
Michael-Simon Sobolev inequality on minimal surfaces:

(∫
(ϕ|A|)4

)1/2

≤ CS

∫
|∇(ϕ|A|)|2 .

With the previous L4-bound, one obtains a recursive estimate:

∥|A|∥L2p(B(p,r/2)) ≤
Cp

rαp
∥|A|∥Lp(B(p,r)), p = 2, 4, 8, . . .

With Moser-type interation, we send p → ∞ and deduce the desired bound:

sup
B(p,r/2)

|A|2 ≤ C

r2

∫
B(p,r)

|A|2.

Finally, choosing ε < 1/C, one obtains:

sup
B(p,r/2)

|A|2 <
1

r2
,

which implies the claimed pointwise estimate:

sup
B(p,r/2)

|A|2 ≤ Cr−2.

8
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[Chen, 1984, Leon, 1983, Brendle, 2023]

4.2 Einstein Manifolds

An analogous epsilon-regularity result holds for Einstein four-manifolds. In foundational work by Anderson, and then
subsequent contributions by Cheeger-Tian, Nakajima, and Gao, it was shown that pointwise curvature bounds can be
derived from the integral Ln/2-control of the Riemann curvature tensor on small balls. In dimension four, this condition
becomes an L2-bound.
Theorem 2 (Anderson, Cheeger–Tian, Nakajima, Gao). There exist constants ε > 0 and C > 0 such that the following
holds. Let (M4, g) be an Einstein manifold, and let p ∈ M . If r > 0 is sufficiently small and:∫

B(p,r)

|Rm|2 < ε, (22)

then:

sup
B(p,r/2)

|Rm| ≤ C

r2
, (23)

where |Rm| denotes the pointwise norm of the Riemann curvature tensor. [Anderson, 1989, Cheeger p and Tian, 2006,
Nakajima, 1988, Gao, 1990]

This theorem states that if the L2-norm of the total curvature is sufficiently small in a ball B(p, r), then the curvature
remains uniformly bounded on the smaller concentric ball B(p, r/2), proving control over the geometry of Einstein
manifolds under integral curvature bounds.

Sketch. Following the method used for proving the Choi-Schoen theorem, we again follow the standard bootstrap
argument, moving from integral to pointwise control.

A key step is the use of harmonic coordinates. Anderson [Anderson, 1989] showed that if
∫
B(p,r)

|Rm|2 < ε for
sufficiently small ε, then there exist harmonic coordinates {xi} on B(p, r) such that the metric satisfies:

∥gij − δij∥C1,α(B(p,r)) ≤ 1
2 , Λ−1δij ≤ gij ≤ Λδij , (24)

for a uniform Λ > 1. In these coordinates, the Laplace–Beltrami operator is uniformly elliptic with controlled constants.

On an Einstein manifold, the Riemann curvature tensor satisfies an elliptic equation of the form:

∆Rm = Rm ∗ Rm, (25)

where ∆ is the rough Laplacian and ∗ denotes bilinear contractions of curvature terms 5 This identity follows from the
second Bianchi identity together with the Einstein condition Ric = λg.

The equation above constitutes a non-linear elliptic system for Rm, with quadratic lower-order terms. Since the equation
is elliptic and the background metric is well-controlled in harmonic coordinates, classical elliptic regularity theory, such
as Moser iteration or interior Lp-to-L∞ estimates, can be applied [Bando et al., 1989, Gilbarg and Trudinger, 2001].
This gives:

sup
B(p,r/2)

|Rm| ≤ C

r2

(∫
B(p,r)

|Rm|2
)1/2

. (26)

If the integral is smaller than a universal threshold ε, we may absorb the constant into the right-hand-side to reach the
desired estimate.

5See [Besse, 1987] for more details.
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5 Compactness and Convergence

In studying sequences of minimal surfaces embedded in a three-manifold, or Einstein metrics on four-manifolds,
one finds that limiting spaces retain smoothness in regions of bounded curvature, but may develop singularities in
higher-energy zones. Compactness theorems ensure that under appropriate geometric controls, such degeneration is
mild and structured, rather than chaotic.

5.1 Minimal Surfaces

The compactness theory for minimal surfaces has been developed in increasingly refined ways. An important result
due to Sharp, Chodosh, Ketover, and Maximo shows that under uniform area and Morse index bounds, a sequence of
minimal surfaces converges to a smooth limiting surface, with their topological type controlled.

Theorem 3 (Sharp-Chodosh-Ketover-Maximo). Let {Σi} be a sequence of closed, embedded minimal surfaces in a
Riemannian 3-manifold (N, g), such that:

Area(Σi) ≤ C, index(Σi) ≤ C. (27)

Then, after passing to a subsequence, Σi → Σ∞ ⊂ N smoothly on compact subsets. Furthermore, the genus of Σi is
uniformly bounded, and the limit Σ∞ is a smooth, embedded minimal surface. [Chodosh et al., 2017]

The interpretation of this is that if a sequence of minimal surfaces has controlled area and genus, then they cannot
degenerate too wildly, and instead must settle down to a smooth limiting surface. This result is widely used in variational
problems, particularly in studying minimal surfaces embedded in three-manifolds with positive Ricci curvature.

Proof. Let us begin by proving that the index bound will imply the existence of at most finitely many unstable regions.
By definition, index(Σi) ≤ C implies that there are at most C linearly independent directions along which the second
variation is negative. Equivalently, one can find at most C disjoint geodesic balls in Σi on which the surface is unstable.
Outside of these geodesic balls, the surface is unstable 6.

On any stable minimal surface in a 3-manifold, Schoen’s curvature estimates give a pointwise bound:

|A|2(p) ≤ C

dist(p, ∂B)2
, (28)

for intrinsic balls B ⊂ Σi disjoint from ∂Σi. In particular, on compact susbets away from the unstable regions, one
obtains a uniform curvature bound:

sup
Σi\

⋃
Br(xi,k)

|A| ≤ C. (29)

We cover each Σi by finitely many intrinsic balls of radius r > 0, chosen to be sufficiently small so that no ball contains
more than one unstable center. On each stable ball, our previous estimate gives:

sup |A| ≤ C(r). (30)

Since there are at most C unstable balls, we conclude a uniform curvature bound outside of their union:

|A|Σi
(x) ≤ C ′, ∀x ∈ Σi \

C⋃
k=1

Br(xi,k), (31)

where xi,k denotes the centres of the unstable regions.

Let us now see that there is smooth subsequential convergence away from points of issue. The uniform curvature
bound on Σi \

⋃
Br(xi,k), together with the area bound, allow us to apply Allard’s compactness theorem to extract a

subsequence converging in C∞ on compact subsets of:

6See [Chodosh et al., 2017] for the local picture of degenerations of bounded-index hypersurfaces
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N \ {at most C points}. (32)

The limit is a smooth minimal lamination. However, the area bound and embeddedness prevent multiplicity and ensure
that the convergence is to a single embedded minimal surface away from the concentration points.

In order to control the topology, we use the Gauss-Bonnet theorem to estimate the Euler characteristic:

2πχ(Σi) =

∫
Σi

KΣi
dA =

∫
Σi

(
SecN (τ)− 1

2 |A|2
)
dA, (33)

where SecN (τ) is the ambient sectional curvature in the direction of the tangent plane. Since SecN is bounded and∫
|A|2dA is controlled by Area · sup |A|2, this gives a uniform bound on χ(Σi), and hence on the genus.

5.2 Einstein Four-Manifolds

A similar philosophy holds for sequences of Einstein four-manifolds. Building on work by Anderson, Bando, Nakajima,
Gao, Cheeger, and Tian, one finds that a sequence of Einstein manifolds with uniform topological and geometric bounds
converges, modulo singularities, to a smooth limiting Einstein orbifold.

Theorem 4 (Anderson-Bando-Nakajima-Gao). Let {(Mi, gi)} be a sequence of Einstein four-manifolds satisfying:

χ(Mi) ≤ C, Vol(Mi, gi) ≥ C−1, diam(Mi, gi) ≤ C. (34)

Then after passing to a subsequence, (Mi, gi) → (X, g∞) in the Gromov–Hausdorff sense, where X is a smooth
Einstein orbifold. Furthermore, the number of diffeomorphism types of Mi is finite. [Anderson, 1989, Bando et al.,
1989, Gao, 1990]

The interpretation of this theorem closely parallels that for minimal surfaces. Under uniform control of volume,
diameter, and topological invariants, the sequence cannot collapse arbitrarily. Instead, it converges to a space that is
smooth away from finitely many singular points, where the geometry exhibits cone-like behaviour (modelled on quotient
singularities). These compactness results are foundational in moduli space theory and essential for understanding the
global geometry of Einstein manifolds.

Proof. Fix a small ε and a volume threshold v0 > 0. For each p ∈ Mi, define the curvature scale:

rε(p) = sup

{
r ≤ 1

∣∣∣∣∣
∫
B(p,r)

|Rm|2 ≤ ε

}
. (35)

Decompose the manifold in the following way:

M>
i =

{
p ∈ Mi

∣∣Vol(B(p, rε(p))) > v0rε(p)
4
}
, M≤

i = Mi \M>
i . (36)

Here, M>
i represents the thick region, where volume at scale rε is non–collapsing, and M≤

i is the thin region (note,
thick/thin decomposition will be officialy introduced in the next section, as it represents its own parallel).

By ε-regularity, every p ∈ M>
i lies in a ball on which |Rm | is uniformly bounded. Coupling this with the global

diameter bound diam(Mi) ≤ C, and the global non-collapsing Vol(B(p, 1)) ≥ C−1, this implies higher-order control
via usual elliptic regularity.

By Cheeger-Gromov-Hamilton compactness, a subsequence converges smoothly (with multiplicity one) on M>
i :

(M>
i , gi) −→ (Xreg, g∞), (37)

where Xreg is an open dense subset of the limiting Einstein orbifold.
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On the thin region M≤
i , the geometry collapses along small-volume balls. The volume collapse at scale ε forces the

pointed rescalings
(
B(p, rε(p)), rε(p)

−2gi
)

to converge to a complete Ricci-flat ALE space R4/Γ. Each of these limits
contributes an isolated orbifold singularity of type R4/Γ.

Gluing the smooth convergence on M>
i with the orbifold asymptotics of M≤

i yields:

(Mi, gi) −→ (X, g∞),

where X is a smooth Einstein orbifold with finitely many singular points.

The final step is an appeal to an orbifold finiteness theorem (originally due to Anderson-Cheeger, and then refined by
Bando-Kasue-Nakajima): Given uniform bounds on χ(Mi), Vol(Mi), and diam(Mi), there are only finitely many
homeomorphism types in the smooth pre-limit sequence. That is, the possible arrangements of finitely many orbifold
singular points and the discrete data of their local groups Γ ⊂ O(4) admits only finitely many combinations under these
constraints.

6 Thick/Thin and Sheeted/Non-Sheeted Decomposition

In geometric analysis, it is often fruitful to decompose a complicated space into two regions: a ‘thick’ or ‘regular’
part where geometry is well-controlled, and a ‘thin’ or ‘singular’ part where degeneration may occur. This dichotomy
appears both in the theory of Einstein four-manifolds and in the study of minimal surfaces, with such processes named
thick/thin decomposition and sheeted/non-sheeted decomposition respectively.

6.1 Einstein 4-Manifolds: Thick/Think Decomposition

In the setting of Einstein four-manifolds, the thick/thin decomposition is based on local pointwise control of curvature
energy and volume ratios. Fix a small constant ε > 0, determined by epsilon-regularity results, to serve as a threshold
for acceptable curvature concentration. At each p ∈ M , define the regularity scale rε(p) as the largest radius r ≤ 1 for
which:

∫
B(p,r)

|Rm|2 ≤ ε. (38)

We then look at the volume growth of this ball to see if it is comparable to Euclidean space, or if it collapses. This
classifies the point p into one of two regions:

• If Vol(B(p, rε(p))) > V0 · rε(p)4, then p lies in the thick region.

• Otherwise, p lies in the thin region, where volume collapses and curvature may concentrate.

This process filters the manifold into thick regions, where we can apply regularity theorems and use comparison
geometry, and thin regions, which are far more subtle and curvature might spike or space pinch. The benefit is that we
have now isolated those difficult regions.

This process is formalised via the following:

Definition 9 (Thick/thin decomposition for Einstein 4-manifolds). Let (M4, g) be an Einstein manifold. For fixed
constants ε > 0 and V0 > 0, define:

rε(p) := sup

{
r ∈ (0, 1] :

∫
B(p,r)

|Rm|2 ≤ ε

}
, (39)

M>V0
:=
{
x ∈ M : Vol(B(x, rε(x))) > V0 · rε(x)4

}
, (40)

M≤V0
:=
{
x ∈ M : Vol(B(x, rε(x))) ≤ V0 · rε(x)4

}
. (41)
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6.2 Minimal Surfaces: Sheeted/Non-Sheeted Decomposition

For minimal surfaces, an analogous decomposition exists, which is used to distinguish regions of high and low area
concentration at small scales. Following the framework introduced by Song [Song, 2022], and used in index-based
compactness theorems, we fix a small scale r > 0 and a threshold n0 > 0. At each point p ∈ Σ, define s(p) ≤ r to be
the largest radius such that the portion Σ ∩B(p, s(p)) is stable. Then we classify points as follows:

• If Area(Σ∩B(p, s(p))) > n0 · s(p)2, we say p lies in the non-sheeted region, indicating possible bubbling or
curvature concentration.

• If Area(Σ ∩B(p, s(p))) ≤ n0 · s(p)2, then p lies in the sheeted region, where the surface behaves regularly.

Intuitively, the sheeted region is like a surface composed of well-separated layers, or ‘sheets,’ with predictable behaviour.
In contrast, the non-sheeted region may exhibit folding, bunching, or bubbling, signaling geometric degeneration.

Definition 10 (Sheeted/Non-Sheeted Decomposition for Minimal Surfaces). Let Σ ⊂ (N3, g) be a minimal surface.
Fix constants r > 0 and n0 > 0. Define:

s(p) := sup {r̃ ≤ r : Σ ∩B(p, r̃) is stable} , (42)

Σ>n0 :=
{
x ∈ Σ : Area(Σ ∩B(x, s(x))) > n0 · s(x)2

}
, (43)

Σ≤n0
:=
{
x ∈ Σ : Area(Σ ∩B(x, s(x))) ≤ n0 · s(x)2

}
. (44)

6.3 Conclusion

Though these two decompositions arise in very different settings, they share a common philosophical role. Both
seek to isolate regions of geometric regularity from those of potential degeneration. In the thick or sheeted regions,
the geometry behaves predictably, and powerful compactness theorems apply. In the thin or non-sheeted regions, by
contrast, curvature concentrates, topological change can occur, and delicate analysis is required.

7 Reflections on the Parallels and Directions for Further Study

The parallels proposed span the fields of topology, differential geometry, and geometric analysis. The fact that these
transcend many areas of mathematics suggests that there may be a deeper conceptual link between the objects which is
worth investigating. Some potential research problems which may warrant further study include:

• Characterising the class of four-dimensional Einstein manifolds that admit isometric minimal embeddings into
higher-dimensional spaces. This may offer a geometric framework extending the constructions of Hitchin and
LeBrun on twistor spaces and self-duality.

• Analyse whether these structural similarities carry over to other elliptical system, such as Yang–Mills fields or
metrics of constant scalar curvature. These may all be viewed as moment-map equations, and understanding
this shared framework could allow techniques, such as existence or regularity results, to be transferred across
systems.

• Explore analogies between the complexification of Einstein geometry (for example, through complexi-
fied holonomy or twistor methods) and the classical complexification of minimal surfaces via the Weier-
strass–Enneper representation. Are there deeper ties between holomorphic data and the underlying real
geometric structure?

• Compare Plateau and free-boundary problems for minimal surfaces with conformal, Robin, and Bartnik-
type boundary conditions for Einstein metrics, with the aim of isolating regimes where well-posedness and
regularity theories align.

Each of these questions present a compelling avenue for deeper mathematical investigation. In the remainder of this
work, we choose to focus on the first question: establishing criteria under which an Einstein four-manifold may be
realised as a minimal submanifold in a suitable higher-dimensional ambient space, constructing an explicit example to
demonstrate this.
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8 Embedding Einstein Four-Manifolds as Minimal Submanifolds

This chapter investigates a concrete connection between Einstein geometry and the theory of minimal submanifolds.
Specifically, we consider conditions under which an Einstein four-manifold may be isometrically immersed as a minimal
submanifold in a higher-dimensional ambient space. This framework allows us to study Einstein manifolds using
techniques from minimal surface theory, and provides a geometric realisation of the parallels explored throughout this
exposition.

To prepare the ground, we begin by examining a classification result due to Jensen, which shows that locally homoge-
neous Einstein four-manifolds are necessarily locally symmetric. This remarkable theorem reduces our subsequent
embedding problem to the realm of locally symmetric spaces.

8.1 Jensen’s Theorem

The defining feature of an Einstein manifold is constant Ricci curvature, which is a strong constraint to place on a group
of objects. Jensen discovered that in four dimensions, all locally homogeneous Einstein four-manifolds are locally
symmetric, which imposes an even stronger constraint on the system.

Definition 11 (Locally Symmetric Space). A Riemannian manifold (M, g) is locally symmetric if its Riemann curvature
tensor is parallel:

∇R = 0 (45)

Theorem 5 (Jensen’s Theorem). Every locally homogeneous Riemannian Einstein four-manifold is locally symmetric
[Jensen, 1969].

Jensen’s original proof proceeded by a brute-force classification of four-dimensional Lie algebras. We choose instead to
follow the curvature-tensor approach of [Derdzinski, 2000], which is more streamlined.

Proof. Let (M, g) be a locally homogeneous Einstein four-manifold. The idea that is that we will first prove the
curvature operator has constant eigenvalues; consequently the eigenvalues of the self-dual and anti-self-dual Weyl
operators W± are constant, and then to finally arrive at ∇R = 0 by Ambrose-Singer.

Let us begin with the following lemma:

Lemma 1. Let (M4, g) be Einstein. If either W+ or W− has pointwise constant eigenvalues, then the corresponding
tensor is parallel: ∇W± = 0 [Derdzinski, 2000].

Proof. Consider W+ acting on the rank-three bundle Λ2
+. Since g is an Einstein metric, the trace-free Ricci part of the

curvature vanishes, with the decomposition is given by:

R = W +
s

12
g ⃝∧ g.

Then all first-order variations of the curvature live in the Weyl tensor W . Since the eigenvalues of W+ are constant,
one can choose a smooth orthonormal basis of Λ2

+ at each point which diagonalises W+ smoothly:

W+ = diag(λ1, λ2, λ3), λi = const.

Differentiating this relation shows that the derivative ∇W+ must preserve the eigenspace structure. But we note that in
dimension four, any trace-free symmetric 3× 3 matrix with distinct eigenvalues has a trivial stabiliser under conjugation
in SO(3). Thus, the only way that ∇W+ can be compatible with a globally fixed diagonalisation is for it to vanish,
∇W+ = 0. The same argument applies to W−.

This is a streamlined version of what is a calculation-heavy proof, and so the reader is recommended to consult
[Derdzinski, 2000], specifically Theorem 7.1, which carries out the index-wise computation using the first Bianchi
identity, and the fact that W+ is trace-free.

Now, we have a corollary to this lemma, which we will likewise prove:
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Corollary 1. If ∇W = 0 on an Einstein four-manifold, then ∇R = 0, and hence (M, g) is locally symmetric.

Proof. On an Einstein manifold, the scalar curvature s is constant, and so the term s
12g ⃝∧ g is parallel. With ∇W = 0,

the decomposition in the previous proof shows that ∇R = 0.

Local symmetry follows from the Ambrose-Singer theorem, which states that a Riemannian manifold with ∇R = 0 is
locally symmetric, meaning that there exist local geodesic symmetries about every point which preserve the metric and
connection. Thus, (M, g) is locally symmetric, as required.

Let us appreciate how Jensen’s theorem is profound. In dimension four, there is the inevitability that a locally
homogeneous Einstein manifold be locally symmetric, a large constraint to place on a system of already highly
constrained objects. Not only this, but we have a theorem which shows that symmetry is something that isn’t just
imposed, but is something that can emerge. We carry this theorem through to the next section, where we link this to
minimal submanifolds.

8.2 Minimal Embeddings of Symmetric Spaces

The bridge between Einstein four-manifolds and minimal submanifolds is made possible by a series of classical results
in differential geometry.

Theorem 6 (Takahashi, 1966). Every irreducible compact symmetric space admits a minimal isometric immersion into
a Euclidean sphere [Takahashi, 1966].

Sketch. Takahashi first proved that an isometric an isometric immersion x : M → Rm+k of a Riemannian manifold M

into Euclidean space satisfying ∆x = λx with λ ̸= 0, is minimal in a sphere of radius r =
√
m/λ.

Now, let M be a compact homogeneous Riemannian manifold whose isotropy representation on TpM is irreducible. For
a non-zero eigenvalue λ, the eigenspace Vλ = {f ∈ C∞(M) | ∆f = λf} is finite-dimensional and G = Isom(M)-
invariant.

Choose an orthonormal basis {f1, . . . , fn} for Vλ, with respect to this inner product. We obtain a mapping x̃ : M → Rn

by

x̃(p) = (f1(p), . . . , fn(p)) for p ∈ M. (46)

The metric pulled back via x̃ is then:

g̃ =
∑
i

dfi ⊗ dfi. (47)

This pullback map is G-invariant, and so Schur’s lemma forces g̃ = c2g with c ̸= 0.

We can then rescale by c−1, giving the map x(p) = 1
c x̃(p), which defines an isometric immersion of M into Rn,

satisfying ∆x = λx with λ ̸= 0. By Takahashi’s prior theorem, this immersion is minimal into a sphere.

We conclude that every compact homogeneous Riemannian manifold with irreducible isotropy group admits a minimal
isometric immersion into a Euclidean sphere. In particular, every irreducible compact symmetric space admits a minimal
isometric immersion as well.

This result shows that highly symmetric spaces can be realised as minimal submanifolds of ambient Euclidean spaces,
which offers a geometric lens from which one can view their structure.

Seeking an even broader principle, Song conjectured the following:

Conjecture 1 (Song). Every irreducible n-dimensional symmetric space admits an isometric immersion into the unit
sphere S(H) of a seperable Hilbert space H as an n-dimensional minimal submanifold [Song, 2024].
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While open in full generality, Song’s conjecture reduces in finite dimensions to Takahashi’s theorem and related results
of do Carmo–Wallach.

Combining these insights, with Jensen’s classification, we arrive at the following:

Theorem 7 (Minimal realisation of locally homogeneous Einstein four-manifolds). Let (M4, g) be an Einstein
four-manifold that is locally homogeneous. Then:

• M is locally symmetric (Jensen, Theorem 5).

• If M is globally symmetric, and assuming Conjecture 1, it admits a minimal isometric immersion into a Hilbert
sphere S(H).

• If M is compact, it admits a minimal immersion into a Euclidean sphere (Takahashi, Theorem 6).

Proof. The first statement follows directly from Jensen’s Theorem. The second is a consequence of Song’s conjecture
(assuming it holds), and the third is a corollary of Takahashi’s result for compact symmetric spaces.

Figure 6: Implication diagram: local homogeneity ⇒ local symmetry (Jensen); global symmetry + Song ⇒ Hilbert-
sphere immersion; compactness + Takahashi ⇒ Euclidean-sphere immersion. (Diagram drawn with Draw.io)

8.3 A Concrete Minimal Immersion of an Einstein Manifold

A natural way to illustrate the ideas of this chapter is to present a specific example: the complex projective plane
CP2, equipped with its normalised Fubini–Study metric, admits a minimal isometric immersion into the round sphere
S7 ⊂ R8. This example elegantly synthesises ideas from Riemannian, complex, and algebraic geometry.

8.3.1 The Geometry of CP2

Recall that CP2 is the space of complex lines through the origin in C3. Formally:

Definition 12 (Complex Projective Plane). The complex projective plane CP2 is the space of complex lines through the
origin in C3:

CP2 =
(
C3 \ {0}

)/(
z ∼ λz, λ ∈ C∗) (48)

[Harris, 1992].
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This defines a smooth, compact, complex manifold of complex dimension 2 (or real dimension 4).

The distinguished Riemannian metric is the Fubini-Study metric, gFS, which has the advantage of being Kähler and of
constant holomorphic sectional curvature.
Definition 13 (Fubini-Study Metric). In the affine chart [1 : z1 : z2], set:

gij̄ = ∂zi∂z̄j log
(
1 + |z1|2 + |z2|2

)
, i, j = 1, 2. (49)

This Hermitian metric is Kähler with constant holomorphic sectional curvature +4.[Matsumoto, 2018].

Note, we have introduced the notion of the Hermitian metric, so we include the following definition for completeness:
Definition 14 (Hermitian Metric). A Hermitian metric on a complex manifold M is a Riemannian metric g which
satisfies:

g(JX, JY ) = g(X,Y ), ∀X,Y ∈ TxM, ∀x ∈ M, (50)

where J denotes the amost complex structure on M .

8.3.2 The Veronese Embedding

In order to embed CP2 as a submanifold of a sphere, the Veronese embedding is introduced, which is a classical method
to realise projective spaces as algebraic subvarieties of higher-dimensional projective space.
Definition 15 (Veronese Embedding). The d-uple Veronese embedding is the morphism:

νd : Pn −→ PN , [x0 : . . . : xn] 7→
[
all monomials of degree d

]
. (51)

This map realises Pn as a smooth projective variety of degree dn in PN , where N = (n + d) − 1 [Harris, 1992,
Shafarevich and Reid, 1994].

The most fundamental example is taking n = 2, d = 2, which gives the classical Veronese surface:

ν2 : CP2 −→ CP5, [x : y : z] 7−→ [x2 : xy : xz : y2 : yz : z2]. (52)

We would like to explore this in more detail.

8.3.3 Lifting to the Sphere and Minimality

Choose homogeneous coordinates with unit length:

ν̃2([x : y : z]) =
1

∥v∥
(
x2, xy, xz, y2, yz, z2

)
∈ C6, ∥v∥2 = |x|4 + |x|2|y|2 + · · ·+ |z|4. (53)

This defines a map:

ν̃2 : CP2 → S11 ⊂ C6, (54)

which is a horizontal lift for the Hopf fibration:

ν2 = π ◦ ν̃2. (55)

Here, π : S11 → CP5 denotes the generalised Hopf fibration, with ν2 = π ◦ ν̃2.
Definition 16 (Hopf Fibration). The Hopf fibration is the smooth surjective map

π : S2n+1 ⊂ Cn+1 → CPn, z 7→ [z],

which sends each point z ∈ S2n+1 to its complex line through the origin. The fibers are circles S1, and this realizes
S2n+1 as a principal S1-bundle over CPn [Frankel, 2011, Kobayashi and Nomizu, 1969].

This structure underlies the Veronese embedding’s lift: by normalising homogeneous coordinates, one maps CP2 into
S11 ⊂ C6, and the Hopf fibration ensures that this lift descends correctly back to projective space.
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8.3.4 Minimal Immersion into S7

Because the image of ν̃2 is orthogonal to the circle fibres, standard submersion theory shows that ν̃2 is minimal in S11

if and only if ν2 is minimal in CP5.

Finally, identify C6 ∼= R12 and observe that the real and imaginary parts of the six complex coordinates span an
8-dimensional real linear subspace R8 ⊂ R12. The image of ν̃2 lies entirely inside the intersection S11 ∩R8 = S7, and
the induced metric equals gFS. Hence we arrive at:

Proposition 1.
(
CP2, gFS

)
admits a minimal isometric immersion into the round sphere S7 ⊂ R8.

Carmo–Wallach showed that this immersion is characterised by the first non-trivial eigenspace of the Laplacian on
(CP2, gFS) [do Carmo and Wallach, 1971].

This example concretely demonstrates the key theme of this exposition: that certain Einstein manifolds, particularly
those with high symmetry, can indeed be realised as minimal submanifolds of ambient spaces. It gives not only a
conceptual link between curvature variational theories, but also a precise geometric construction bridging the two
domains.

9 Conclusion and Outlook for Future Research

This exposition set out to understand the geometric parallels between minimal surfaces and Einstein four-manifolds.
Although these objects arise in different dimensions and distinct corners of geometry, they stand on common ground.

Through a shared variational structure, second variation theory, stability analysis, monotonicity properties, and
compactness results, both minimal surfaces and Einstein manifolds reveal a common analytical and topological theme.
Both admit natural decompositions, into sheeted and non-sheeted, or thick and thin regions, which isolate geometric
regularity from degeneration, and allow powerful theorems to emerge to aid in analysis.

These parallels are not merely structural: under symmetry, an Einstein manifold can be isometrically immersed as a
minimal submanifold of a higher dimension. The explicit immersion of CP2 into the round sphere demonstrated that in
special cases, the two theories fuse. More broadly, this project offered a perspective on how ideas in geometric analysis
can echo across different settings.

There are, of course, many questions left open. Can similar analogies be found in other elliptic systems? Might these
ideas extend to gauge theory? Could further study of symmetric spaces lead to new classification results for Einstein
manifolds?

In closing, this has been both a journey of analysis and philosophy. It shows that even in the abstract world of differential
geometry, there are moments where distinct objects from different spaces can speak the same language. Einstein
four-manifolds and minimal surfaces, drawn from different dimensions but sharing crucial parallels, is a reminder that
order pervails in mathematics.
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