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OVERVIEW

Laying the Groundwork

The Ambrose-Singer Theorem
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WHERE DID WE LEAVE OUR STUDIES LAST TIME?

Warm-up: Suppose that (M, ∇) is a manifold with a connection
(on a vector or principal bundle).

▶ What do we mean by the restricted holonomy group at a
point p ∈ M?

▶ What is the motivation for its introduction?
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WHERE DID WE LEAVE OUR STUDIES LAST TIME?

The restricted holonomy group, Hol0p(∇), is the subgroup of the
full holonomy group, Holp(∇), which is generated by parallel
transport along contractible loops based at p.

This is the identity component of the holonomy group, by which
we mean that it is the connected Lie subgroup containing the
identity in the ambient Lie group GL(n,R).

The motivation around this is that if the manifold is not
simply-connected, loops can differ in their homotopy class. Full
holonomy accounts for all of these, but restricted holonomy
ignores this and focuses only on the local structure. A good
philosophy is then: Hol0(g) teaches us about the manifold
structure when the dimension of Hol0(g) is quite small.
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BUILDING UP TO THE AMBROSE-SINGER THEOREM

We would like to state the Ambrose-Singer Theorem shortly,
which is a foundational result in holonomy.

To do so, we need to lay the groundworks, exploring curvature
and its relation to the connection.
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CURVATURE AND HOLONOMY

How would you informally describe curvature? A good answer
seems to be that curvature is an obstruction to flatness.

A good question to ask may be: How would you guess that the
curvature is related to the holonomy?

Imagine then that you are considering a curved surface, equipped
with an arrow. You draw a loop on the surface, and place the
arrow at a starting point on the loop. You transport the arrow
around the loop until it returns to the starting point.

▶ If the surface is flat, what happens when you return to the
starting point?

▶ If the surface is curved, what happens when you return to
the starting point?
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CURVATURE AND HOLONOMY

A good suggestion would be:
▶ If the surface is flat, like a plane, then the arrow returns to

its original orientation. I.E. The restricted holonomy group is
trivial!

▶ If the surface is curved, like a sphere, the arrow will be
rotated when it returns back. I.E. The restricted holonomy
group is not trivial!

The link with holonomy is then immediate: that rotation in the
latter case is an element of the holonomy group, and the size and
direction of that rotation (when the loop is infinitesimal) are
determined by the curvature.
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CURVATURE AS INFINITESIMAL HOLONOMY

Let’s formalise the prior discussion.

Take a very small parallelogram in the tangent space at a point p.
Let this be the parallelogram which is spanned by vectors X, Y .
Construct a tiny loop around the boundary of this parallelogram
on the manifold. Let’s name the loop γX,Y .

Parallel transport a vector v around γX,Y . The change in v is
given approximately by:

v 7→ v − R(X, Y )v · (Area) (1)

This tells us that the curvature tensor acts like an infinitesimal
generator of the holonomy!
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LINKING TO LIE GROUPS

If holonomy were a Lie group, G, then curvature is like the Lie
algebra element A such that the holonomy transformation around
a small loop is approximately:

exp(Area ·A). (2)

Translation: Small loops generate small elements of holonomy,
and those come from curvature. Over time, transporting many
such loops in various directions builds up the holonomy group,
and this is what the Ambrose-Singer Theorem formalises.
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MOTIVATION

The Ambrose-Singer Theorem formalises our prior ideas, bringing
together:

1. How does parallel transport behave around small loops?
2. Curvature encodes infinitesimal holonomy
3. Determining the holonomy Lie algebra

The Ambrose-Singer Theorem gives us a remarkable answer: The
curvature tensor generates the holonomy Lie algebra. Precisely,
we can build up every infinitesimal holonomy transformation by
looking at the curvature endomorphisms, parallel transported
back to the base point.
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THE AMBROSE-SINGER THEOREM, 1953 (VECTOR
BUNDLES)

Let E → M be a vector bundle with connection ∇, and fix
p ∈ M . Then the Lie algebra of the restricted holonomy group at
p, denoted holp, is the smallest Lie subalgebra of End(Ep),
containing all endomorphisms of the form:

τ−1
γ ◦ Rx(Y, Z) ◦ τγ , (3)

where x ∈ M , γ is a smooth path from p to x, and Y, Z ∈ TxM
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THE AMBROSE-SINGER THEOREM, 1953 (PRINCIPAL
BUNDLES)

A more conceptual version of the theorem can also be presented,
using the idea of principal bundles.
Let M be a manifold, P be a principal bundle over M with fibre
G, and D be a connection on P . Fix p ∈ P , and define
Q = {q ∈ P : p ∼ q}.
Then, holp(P, D) is the vector subspace of the Lie algebra g of G
spanned by the elements of the form π∗(R(P, D) · v ∧ w)q for all
q ∈ Q and v, w ∈ C∞(TM), where π maps P × g 7→ ad(P ).
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REMARKS ON THE AMBROSE-SINGER THEOREM

We have two perspectives on Ambrose-Singer:
▶ Vector bundle: Curvature as endomorphism, transported to

basepoint
▶ Principal bundle: Curvature as vertical bracket of horizontal

lifts. Each gives rise to the same Lie algebra of the restricted
holonomy group.
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SKETCH OF PROOF FOR THE AMBROSE-SINGER
THEOREM

This proof is from Besse’s book on Einstein manifolds, based
upon a technique by Nijenhuis.

▶ Take a loop based at p, which is homotopic to zero.
▶ Fill up the loop with a smooth surface.
▶ Use a typical finite decomposition of the lasso, applying the

’Lasso Lemma’, by a double integral on the surface.
▶ This yields the parallel translation along the loop as a double

integral of the desired form.
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