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Minimal Surfaces Einstein Four-Manifolds

A surface in R3is minimal if and only if its mean curvature vanishes at every point. That is: A Riemannian manifold (M, g) is Einstein if there exists a constant 1 € R such that: The parallels proposed span the fields of topology, differential geometry, and geometric analysis. It

1 is thus natural to consider the conceptual link between the objects. A fruitful question to ask is
H = 5(’“1 +ko) =0 <= ki = —ks, Ric, = Ag, whether, under certain conditions, an Einstein four-manifold may be isometrically immersed as a
where k; and k, are principal curvatures of the surface. where Ric is the Ricci curvature tensor. minimal submanifold in a higher-dimensional ambient space.

d=2 A Riemannian manifold is Einstein Best tool is elimination. The chief tool is I
if and if it has constant Gaussian the Hitchin-Thorpe inequality:
curvature Recall that a Riemannian manifold (M, g) is locally symmetric if its Riemann curvature tensor is
(D) < 2x(M), parallel
o o VR =0
A Riemannian manifold is Einstein Usually admit a negative Einstein metric.
d=3 if and only if it has constant sectional d>5 Existence in positive case hinges on Myers Every locally homogeneous Einstein four-manifold is locally symmetric (Jensen, 1969).
curvature theorem and the Yamabe problem.
Variational Approach Variational Approach I
Variationally, minimal surfaces are critical points of the area functional: Einstein four-metrics are critical points of the Einstein-Hilbert functional: Every irreducible compact symmetric space admits a minimal isometric immersion into a
Euclidean space (Takahashi, 1966).
A:/ dA, £(g) = [3s Rgdvoly
¥ P (Vol(M, 9)) 72
Further, minimal surfaces are fixed points of the Mean Curvature Flow (MCF) Einstein metrics arise as fixed points of the Ricci flow
6_X — _Hu dg .
ot ’ 5 — —2Ric(g(?)),

Every irreducible n-dimensional symmetric space admits an isometric immersion into the unit
sphere § (') of a separable Hilbert space H as an n-dimensional minimal submanifold (this
reduces in finite dimensions to Takahashi’s theorem and the related results of do Carmo-Wallach)

Second Variations Second Variations

The second-variation of the area functional: Second-variation of the Einstein-Hilbert functional, restricted to transverse-traceless tensors,
PAV.V) = / (TVVYdu is governed by the Lichnerowicz Laplacian:
M

| | | Aph = V*Vh + 2Rh,
where ] is the Jacobi operator: J = AL+ |AP? + Ricy (v, v),

Compact = Minimal immersion into Euclidean sphere

" T Monotonicity and Local Rigidity
Monotonicity and Local Rigidity

For any p € M and sufficiently small 7 > 0, the normalised volume function:
For any point p € ¥ and sufficiently small » > 0, the function: ., Vol(B(p,))

Globally symmetric + Irreducible = Minimal immersion
into Hilbert sphere

Locally homogeneous = Locally symmetric

T Area(z;f wr)) is almost monotone non-increasing as v — 0, with equality if and only if the metric is locally flat at

is monotone non-decreasing up to curvature correction terms when the ambient space N is not flat p

Epsilon Regularity and Energy Thresholds Epsilon-Regularity and Energy Thresholds

Consider the complex projective plane, CP#, equipped with its normalised Fubini-Study metric:

Choi-Schoen: There exist constants ¢ > 0 and C > 0 such that the following holds. Let ¥ be an embedded Anderson, Cheeger-Tian, Nakajima, Gao: There exist constants € > 0 and C > 0 such that the
minimal surface in a Riemannian 3-manifold Nandletp € X.Ifr > 0 is sufficiently small and: following holds. Let (M*, g) be an Einstein manifold, and letp € M. Ifr > 0 is sufficiently small 9; = 0,05 10g<1 + |z1]* + |Z2|2), 1,7 =1,2.
then: /ZmB AP <e, and / |Rm|? < &, then:
v B sup |Rm| <, This admits a minimal isometric immersion into the round sphere S7 c R8. We realise this by
sup |A]? < 92 St defining a map:
SNB(p,r/2) T Uy : CP? — S ¢ (C6,

Compactness and Convergence Compactness and Convergence which is a horizontal lift for the Hopf fibration,

Sharp-Chodosh-Ketover-Maximo: Let {X ;} be a sequence of closed, embedded minimal surfaces in a

i} _ o G0 s nstei i - Frino: Uy = T O Us.
Riemannian 3-manifold (N, g), such that: Anderson-Bando-Nakajima-Gao: Let {(M;, g;)} be a sequence of Einstein four-manifolds satisfying: . . . 1 2h 1 fzb - h .
. _ . Because the image of this map is orthogonal to the circle fibres, standard submersion theory shows
Area(X;) < C, index(X;) < C. M;) < C, Vol(Mi,¢)>C™"', diam(M;g;) <C. . . . . . . . . s
(%) () x(M:) < olM;, 9:) 2 tam(M;, g1) < that it is minimal in S if and only if the Hopf fibration is minimal in CP%. Then, identifying C® =
Then, after passing to a subsequence £ ; » X ,, € N smoothly on compact subsets. Furthermore, the genus of Then after passing to a subsequence, (M;, ;) = (X, go) in the Gromov-Hausdorff, where X is a R'%, we cam realise the real and imaginary parts of the six complex coordinates span an 8-
2 ; is uniformly bounded, and the limit 2 o, is a smooth, embedded minimal surface smooth Einstein orbifold. Furthermore, the number of diffeomorphism types of M; is finite. dimensional real linear subspace. The image of the map then lies entirely in the intersection S N

R® = S7, so we see that (CP?, gps) admits a minimal immersion into the round sphere.

(For references, please see the paper on my website, as there are too many to list here)




