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WHAT INTUITION SHOULD WE CARRY FORWARD?

Holonomy is a geometrical consequence of the curvature of a
manifold: It measures how vectors transported around loops
return rotated.

This is of use to us because it can help us detect details on the
geometry, for example whether there is a hole or a region of high
curvature.
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WHAT INTUITION SHOULD WE CARRY FORWARD?

Extend your arm in front of you, and make a thumbs up.

Now sweep your arm to the right, retaining the same position.
Your thumb should still be pointing upwards.

Sweep your arm up, so that it is above your head. You will have
retained the same position, but find your thumb is now pointing
to the left.

Let’s return to where we started, sweeping your arm down. You
will now find that your arm is in its initial position, but your
thumb is pointing to the left.

This change in the pointing of your thumb is a demonstration of
holonomy!
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WHAT INTUITION SHOULD WE CARRY FORWARD?

Imagine parallel parking a car. You pull up to the car in front,
and then reverse, turn your wheel right, go forward, turn your
wheel left, repeat.

At the end, your wheel is where it started, but you’ve transported
horizontally.

The net horizontal shift is holonomy!
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VECTOR BUNDLES AND PRINCIPAL BUNDLES

Let’s briefly refresh our mind of the concepts that we need, in
order to understand holonomy.

We will be defining (in this presentation) holonomy on vector
bundles and principal bundles, which is the most general scenario
that one can consider. We will then reward ourselves by
considering the more familiar example of Riemannian geometry,
which we know from experience comes with pleasent definitions
of connections and curvature.
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VECTOR BUNDLES

The vector bundle is known to us from a standard course on
smooth manifolds: it is the generalisation of the idea that one
can attach a vector space to each point of the manifold.

(Recall that our reasoning for introducing this rather abstract
concept was to conceptualise the tangent space and cotangent
space as a manifold)
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VECTOR BUNDLES

Formally, a real vector bundle of rank k over a manifold M
consists of a manifold E, with a surjective continuous map
π : E → M , satisfying:

1. For each p ∈ M , the fibre Ep = π−1(p) over p is endowed
with the structure of a k-dimensional real vector space.

2. For each p ∈ M there exists a neighbourhood U of p in M
and a homeomorphism Φ : π−1(U) → U ×Rk, which we call
a local trivialisation of E over U .

Further, we require that the local trivialisation satisfies:
▶ For a projection πU : U × Rk → U , πU ◦ Φ = π

▶ For each q ∈ U , the restriction Φ to Eq is a vector space
isomorphism from Eq to {q} × Rk ∼= Rk
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PRINCIPAL BUNDLES

Now let us consider the more general concept of principal bundles.
Our motivation here is similar: we want a way to formalise the
features of a Cartesian product X × G. However, we now
consider that G is a group of X.

To be somewhat specific, in the concept of the vector bundle, M
and E were general manifolds, but the fibres π−1(x) were
required to be vector spaces. We’d like to generalise this, so that
the fibre π−1(x) can be any general manifold.
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PRINCIPAL BUNDLES

Nothing comes for free; with more generality, we will lose some of
specific structure. This is an issue to physicists, as they need
structure with which to describe physical scenarios.

As such, we consider that the fibre is a Lie group. This is of
course still more general than the vector bundle, but specific
enough that it is useful for descriptions. And of course, Lie
groups are much studied, and we have a decent idea of the
underlying theorems and such.
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PRINCIPAL BUNDLES

Let G be a Lie group, and let P and M be smooth manifolds. A
principal G-bundle is a quadruple (P, M, π, G), where:

1. π : P → M is a smooth surjective submersion
2. G Acts freely and smoothly on the right of P :

Rg : P → P, p 7→ p · g. (1)
That is, every group element moves a point in P without
fixing it.

3. The action is fibre-preserving, and the fibres of π are the
orbits of action:

π(p · g) = π(p), ∀p ∈ P, g ∈ G. (2)
4. It is locally trivial, so for every point x ∈ M , there exists an

open neighbourhood U ⊂ M , such that:

π−1(U) ∼= U × G. (3)
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CONNECTIONS ON VECTOR BUNDLES

With our mind refreshed on the topic of vector bundles and
principal bundles, we can consider the notion of connections.
Let’s recall why we need to introduce this concept.

Take a smooth n-dimensional manifold M . At each point p ∈ M ,
we have a vector space Ep which floats above the manifold. This
is our vector bundle π : E → M .

Now I pose the question: How do you compare vectors in Ep and
Eq, for nearby points p and q.

The issue we should immediately see is that the vectors live in
different spaces, and thus there is no natural way to say that a
vector over p is the same as one over q.
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CONNECTIONS ON VECTOR BUNDLES

What we would like is a method for connecting the fibres; a rule
which lets us differentiate sections of the bundle.

The connection provides us with such a tool. It gives us a way to
differentiate sections, taking into account the geometry of each
bundle.
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DEFINING A CONNECTION ON A VECTOR BUNDLE

Let E → M be a smooth vector bundle. Let Γ(E) be the space
of smooth sections of E → M . A connection on E is a map
∇ : Γ(E) → Γ(T ∗M ⊗ E), such that:

∇(fs) = df ⊗ s + f∇s, ∀f ∈ C∞(M), s ∈ Γ(E), (4)

and further:

∇s1 + s2 = ∇s1 + ∇s2 (5)
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CONNECTIONS ON A VECTOR BUNDLE

That is, a connection on a vector bundle is a derivation in the
section argument and a C∞(M)-linear map in the vector field. In
that way, it is like a covariant derivative, telling us how the
section is changing relative to the bundle.

On occassion, it will be of use to us to consider the connection
locally. In the local frame {ei} for the bundle E, you can write
any section s = siei. Then a connection acts as:

∇Xs = X(si)ei + si∇Xei (6)
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CONNECTION ON A PRINCIPAL BUNDLE

Take a principal bundle π : P → M , with structure group G.
Over each point x ∈ M , the fibre π−1(x) is a copy of G, and the
bundle comes equipped with a right G-action that’s free and
transitive on each fibre.

Our question this time arises from the following: If you are
walking along the manifold M carrying elements of G, how do
you move in a horizontal direction, when everything you know is
vertical along fibres?

Further, how do you know when you are going in a direction
which is not just twisting around the group, but is really exploring
the geometry of the base manifold?
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CONNECTION ON A PRINCIPAL BUNDLE

Again, the concept of a connection answers this! Although it
does something different this time: It gives you a way to split the
tangent space of the total space P into:

TpP = HpP ⊕ VpP, (7)

where:
▶ VpP Is the vertical subspace, which are the directions that

you move along the fibre
▶ HpP Is the horizontal subspace which is defined by the

connection, which tells us how to stay level with respect to
the base space M
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CONNECTION ON A PRINCIPAL BUNDLES

Let π : P → M be a smooth principal G-bundle, with right
action Rg : P → P for each g ∈ G. The vertical subspace at a
point p ∈ P is:

VpP := ker(dπp) ⊂ TpP. (8)

These are the directions which are tangent to the fibre through p,
and they correspond to the Lie algebra g of G. The connection
gives a horizontal complement, HpP , which varies smoothly in p,
such that:

TpP = HpP ⊕ VpP, ∀p ∈ P. (9)

The assigment p 7→ HpP is G-equivalent, meaning that the
horizontal spaces transform nicely under the right-action:

(dRg)p(HpP ) = Hp·gP (10)
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PARALLEL TRANSPORT ON A VECTOR BUNDLE

We have used the word connection to represent the idea that such
an object allows us to connect the fibres of a bundle over different
points of M . But how do we exactly connect such fibres?

Parallel transport!

We first ask, how do we know if a section is parallel?
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PARALLEL TRANSPORT ON A VECTOR BUNDLE

For the construct that follows, let M be a smooth manifold, and
let E → M be a vector bundle over M . Denote the connection
on E with ∇E .

Let γ : [0, 1] → M be a smooth curve in M . We may pullback γ,
giving us γ∗(E), which takes us from E to [0, 1].
This has fibre Eγ(t) over t ∈ [0, 1], where Ex is the fibre of E
over x ∈ M .

Let s be a smooth section of γ∗(E) over [0, 1], so that
s(t) ∈ Eγ(t) for each t ∈ [0, 1].

We get a connection on γ∗(E) for ’free’, as ∇E pulls back under
γ to give a connection on γ∗(E) over [0, 1].
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PARALLEL TRANSPORT ON A VECTOR BUNDLE

Using this, our definition for parallel transport takes the following
form: s Is parallel if its derivative under the pulled-back
connection is 0. That is, if ∇E

γ̇(t)s(t) = 0, ∀t ∈ [0, 1].

Let us remark that the parallel transport equation is a first-order
ODE in s(t). This means that for each initial value e ∈ Eγ(0),
there exists a unique, smooth solution s with s(0) = e, VIA the
Picard-Lindelöf Theorem.
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PARALLEL TRANSPORT MAP ON A VECTOR BUNDLE

Even if one is familiar with the notion of parallel transport from a
standard course on Riemannian geometry, it is unlikely that one is
as familiar with the notion of parallel transport maps.

Let M be a smooth manifold, E be a vector bundle over M , and
∇E be a connection on E. Suppose that γ : [0, 1] → M is
smooth, with conditions that γ(0) = x, γ(1) = y, for x, y ∈ M .
Then for each e ∈ Ex, there exists a unique smooth section s of
γ∗(E), satisfying ∇E

γ̇(t)s(t) = 0, for t ∈ [0, 1], and s(0) = e.
Define Pγ(e) = s(1). The parallel transport map is the
well-defined linear map Pγ : Ex → Ey.
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HORIZONTAL LIFTS ON PRINCIPAL BUNDLES

We have the essential component which the definition of
holonomy on the vector bundle relies on. We don’t, however,
currently possess the fundamental tool we will need for defining
holonomy on principal bundles.

Let us set things up like so: Let M be a manifold, P be a
principal bundle over M with structure group G, and D a
connection on P .
Let γ : [0, 1] → P be a smooth curve in P . Then γ̇ ∈ Tγ(t)P is
tangent to γ([0, 1]) for each t ∈ [0, 1].
γ Is a horizontal curve if its tangent vectors are horizontal
(γ̇(t) ∈ Dγ(t) for each t ∈ [0, 1].
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HORIZONTAL LIFTS ON PRINCIPAL BUNDLES

The definition extends to the scenerio of γ : [0, 1] → P being
piecewise-smooth, with the classification then being that γ is
horizontal if γ̇(t) ∈ Dγ(t) for t in the open, dense subset of [0, 1],
for γ̇ well-defined.

Indeed, if γ : [0, 1] → M is piecewise-smooth, with γ(0) = m,
and p ∈ P , with π(p) = m, then there exists a unique horizontal,
piecewise-smooth map γ′ : [0, 1] → P , such that γ′(0) = 0, π ◦ γ′

is equal to γ.
This follows from the Picard-Lindelof Theorem for ODEs, in a
way analagous to the use of this theorem for parallel sections of
γ∗(E), as in the case of vector bundles.
We define γ′ as a horizontal lift of γ.
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HOLONOMY GROUP FOR VECTOR BUNDLES

Finally, we can define the notion of holonomy on vector bundles!

Let M be a manifold, E be a vector bundle over M , and ∇E be
a connection on E.

Fix a point p ∈ M . Define a loop based at x, γ : [0, 1] → M ,
which is piecewise smooth path, where γ(0) = γ(1) = x.

The parallel transport map is defined as Pγ : Ex → Ex, which is
invertible and linear, such that Pγ ∈ GL(Ex).

The holonomy group Holx(∇E) of ∇E based at x is defined as:

Holx(∇E) = {Pγ : γ Is a loop based at x} ⊂ GL(Ex) (11)
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HOLONOMY GROUP FOR VECTOR BUNDLES

We note a particular type of holonomy group, called the restricted
holonomy group. The restricted holonomy group based at x is
the subgroup Hol0x(∇), where we consider only the loops γ that
are contractible.

26 / 30



HOLONOMY GROUP FOR PRINCIPAL BUNDLES

We proceed in a somewhat parallel manner. Let G be a Lie
group, and P be a principal G-bundle over a smooth manifold M ,
and let D be a connection on P .
For p, q ∈ P , we write p ∼ q if there exists a piecewise-smooth
horizontal curve in P which joins p and q, which defines an
equivalence relation.
Fix p ∈ P , and define the holonomy groups of (P, D) based at p
to be:

Holp(P, D) = {g ∈ G : p ∼ g · p}. (12)
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HOLONOMY GROUP FOR PRINCIPAL BUNDLES

We can define the restricted holonomy as before, denoted as
Hol0p(P, D), for which we consider its elements the horizontal lifts
of contractible loops γ.
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HOLONOMY GROUP FOR PRINCIPAL BUNDLES

Does our idea of connectedness from the vector bundle scenario
follow through here?

Yes! If M and P are connected, then the holonomy group
depends on the basepoint p only up to conjugation in G. I.E. If
we take q to be any other basepoint for the holonomy, then there
exists a unique g ∈ G such that q ∼ p · g. With such value of g:

Holq(∇) = g−1 Holp(∇)g, (13)

and in particular:

Holp·g(∇) = g−1 Holp(∇)g. (14)
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NEXT TIME...

▶ Fundamental properties of holonomy, with proofs
▶ Ambrose-Singer Theorem
▶ Berger’s classification.
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