
Differential Geometry Lecture 1: Minimal Submanifolds and Calibrated Geometry

Lecture 1: Minimal Submanifolds and Calibrated Geometry

An introduction to minimal submanifolds, calibrations, calibrated submanifolds, and their link with holonomy

Prelude: Where are we? Where are we Going?
Sometimes we forget, especially when fully immersed in distinct modules at university, that mathematics is not
a collection of disconnected subjects but is more of a web of intersecting ideas. Ideas that begin in one corner
of maths often reappear in a new way in another corner. I would like to begin these notes by tracing one such
path: the web of geometry, highlighting calibrated geometry as a meeting place. It stands at the intersection of
differential geometry, Riemannian geometry, symplectic and Kähler geometry, and even algebraic geometry.
Let us begin by sketching a rough sequence of the geometry that one may have thus met:

• Topologicalmanifolds: Wemeet arbitrary-dimensional generalisations of curves and surfaces. The govern-
ing property is that these spaces locally resemble Euclidean space, though globally theymay differ. Formally,
these are topological spaces that are second countable, Hausdorff, and locally Euclidean. Key topics include:

– Connectedness and compactness
– Cell complexes
– Homotopy and the fundamental group
– The Seifert-Van Kampen theorem
– Covering maps
– Homology

• Smooth manifolds: A refinement of the topological notion of manifolds, where we define the notion of a
smooth atlas, to allow us to speak of derivatives, vector fields, and flows. Here, calculus finds a new home
in many dimensions. Key topics:

– Tangent vectors and covectors
– Submanifolds
– Vector and tensor fields
– Flows
– Lie derivatives
– Lie groups
– Differential forms
– Orientations
– de Rham cohomology
– Foliations
– Group actions

• Riemannian geometry: A branch of differential geometry where we study smooth manifolds with a Rie-
mannian metric (that is, a symmetric, positive-definite metric that varies smoothly from point to point).
The advantage of this is that we then have notions of the length of curves, angles, surface area, and volume.
Key topics:

– Riemannian metrics and manifolds
– Geodesics and exponential map
– Riemannian curvature tensor
– Submanifold theory
– First and second variation formula for curves
– Jacobi fields
– Conjugate points and minimising geodesics
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– Completeness of Riemannian manifolds
– Bonnet Myers and Cartan Hadamard Theorem
– Space forms
– Comparison theorem in Riemannian geometry

• Symplectic geometry: Thecorrect and geometric formalism to describe dynamics in theHamitonian frame-
work. Here, we study smooth manifolds which are equipped with a closed, non-degenerate 2-form, called
the symplectic 2-form. This allows for the measurement of sizes of two-dimensional objects in the space.
This is analogous to the role played by the metric tensor in Riemannian geometry. Key topics:

– Symplectic forms and Darboux’s theorem
– Canonical symplectic form on cotangent bundles
– Hamiltonian vector fields and flows
– Poisson brackets and Poisson manifolds
– Symplectic group and linear symplectic geometry
– Lagrangian submanifolds
– Moment maps and symplectic reduction

• Algebraic geometry: The study of spaces defined by polynomial equations. At first glance, this is a geom-
etry of zeros and loci, but it quickly reveals deep connections with number theory, topology, and complex
geometry. Over the complex numbers, varieties can be viewed as complex manifolds, linking algebraic ge-
ometry to both symplectic and Kähler geometry. Modern algebraic geometry uses the language of schemes,
which allows for a uniform treatment of varieties over arbitrary fields and brings arithmetic into the picture.
Key topics:

– Affine and projective varieties
– Morphisms of varieties and maps given by polynomials
– Coordinate rings and the Nullstellensatz
– Schemes and sheaves
– Line bundles and divisors
– Cohomology of sheaves
– Intersection theory
– Moduli spaces (e.g. curves, vector bundles)
– Connection with complex and Kähler geometry

Whilst it can feel like each of these topics is somewhat solitary, really they are much connected. The following
diagram aims to demonstrate this:
Calibrated geometry enters precisely here, sitting at the intersection, as demonstrated in the diagram. To even
define a calibration, we need the language of smooth manifolds and differential forms. To understand the min-
imality they guarantee, we rely on ideas from Riemannian geometry, where notions of length, area, and volume
are made precise. To see their most natural examples, we turn to symplectic, complex and Kähler geometries,
where Lagrangian and holomorphic submanifolds reveal themselves as calibrated. And in the broader picture,
algebraic geometry provides the moduli-theoretic and topological frameworks where these objects can be studied
in families.
Thus, bear in mind whilst studying the topic, that calibrated geometry is not a topic one can introduce in isolation.
It is the natural meeting place of these strands, and such synthesis only makes sense once the background is
sketched. Having refreshed one’s mind on the areas of geometry, what follows will be the study of a particular and
beautiful path across it.

1.1 An Introduction toMinimal Submanifolds
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Figure 1: The geometric connections

1.1.1 Minimal Surfaces in Euclidean Space

Our first question is an ancient one:
’Among all surfaces in ℝ3 with a fixed boundary curve, which one has least area?’
This is known as Plateau’s problem.

Historical Note

Despite its name, the roots of this problem trace back to Lagrange in the 18th century, who wrote down the
Euler-Lagrange equations for the area functional. In the 19th century, Plateau gave physical intuition for the
concept, studying soap films suspended across wire frames.

Minimal surfaces are natural solutions to this problem. They are characterised by the property that every suffi-
ciently small piece of the surface minimises area among nearby competitors with the same boundary. Analytically,
this means that they are critical points of the area functional.

𝒜(Σ) = ∫
Σ
𝑑𝐴, (1.1)

so the first variation of𝒜 vanishes under compactly supported deformations.
Equivalently, if Σ ⊂ ℝ3 is a smooth surface with unit normal𝑁, then Σ is minimal if and only if its mean curvature
vector𝐻 vanishes identically:
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𝐻 ≡ 0. (1.2)

Geometrically, this means that there is a perfect balance of curvature, meaning that no point on the surface bends
more than than another. Physically, this is the reason that soap films naturally realise minimal surfaces: surface
tension drives them to configurations where curvature cancels out and area is locally minimised.

1.1.2 Minimal Submanifolds in a RiemannianManifold

The notion of minimal surfaces in Euclidean space extends naturally to submanifolds of arbitrary Riemannian
manifolds. To set the stage, let us recall the definition.

Definition 1.1: Minimal submanifolds

Let (𝑀, 𝑔) be an 𝑛-dimensional Riemannian manifold, and let Σ𝑘 ⊂ 𝑀 be an immersed 𝑘-dimensional
submanifold. We say that Σ is minimal if it is a critical point of the volume functional

Vol(Σ) = ∫
Σ
𝑑𝜇Σ, (1.3)

where 𝑑𝜇Σ is the induced 𝑘-dimensional volume form.
That is, for every smooth variation Φ𝑡 ∶ Σ → 𝑀 with Φ0 = 𝟙Σ, we have:

𝑑
𝑑𝑡Vol(Φ𝑡(Σ))|𝑡=0 = 0. (1.4)

Equivalently, Σ is minimal if and only if its mean curvature vector𝐻 vanishes identically:

𝐻 ≡ 0. (1.5)

The condition that𝐻 ≡ 0 is the higher-dimensional analogue of the vanishing mean curvature for surfaces in ℝ3.
In every normal direction, the extrinsic curvatures cancel out, so that the submanifold ’balances’ itself with the
ambient geometry.
One remarks that at no point do we require that Σminimises the volume. The definition only requires stationarity
of the volume functional, not that Σ globally minimises volume among all competitors with the same boundary.
For example, a saddle surface inℝ3 isminimal, but does notminimise area globally. Inmany contexts, the stronger
property of being volume-minimising is what one truly seeks, so it would be useful to have a stronger notion...

1.2 Calibrated Geometry
We begin with a question:
Can we identify submanifolds which minimise volume within their entire homology class?
In practice, to prove such global minimality is notoriously difficult. The minimality condition 𝐻 = 0 translates
into a non-linear elliptic PDE, solvable with only delicate analytic estimates and variational methods. Calibrated
geometry offers a different path: it provides a purely differential-geometric criterion ensuring that certain sub-
manifolds are not only stationary, but are absolutely volume-minimising in their homology class.
How, then, should one picture this? A calibration is like a geometric measuring tool. Apply it to any oriented 𝑘-
dimensional surface in the manifold, and it will always overestimate the volume. Yet for a distinguished family of
submanifolds, the calibration is perfectly accurate: it measures their volume exactly. Those special submanifolds
are called calibrated, and they are automatically volume-minimising in their homology class.
The advantage is this: calibrated submanifolds are automatically volume-minimising in their homology class, no
PDEs required. The existence of a calibration rigidly locks in their minimality.
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Interlude: Differential Forms as Measuring Devices

Before introducing calibrated geometry in its mathematical formality, it is useful to recall how differential forms
act as measuring tools on a Riemannian manifold. There is nothing new here for a reader who is familiar with
differential geometry, but it will allow us to introduce the notation and perspective that shall be used throughout.
Let (𝑀, 𝑔) be an 𝑛-dimensional Riemannian manifold.

• A 𝑘-form𝜑 ∈ Ω𝑘(𝑀) is a smooth alternating 𝑘-linear functional on tangent vectors. At each point𝑝 ∈ 𝑀m
the form 𝜑𝑝 ’eats’ 𝑘 tangent vectors and returns a number 𝜑𝑝(𝑣1, ..., 𝑣𝑘) ∈ ℝ.

• Geometrically, if 𝑣1, ..., 𝑣𝑘 span a 𝑘-dimensional parallelepiped in𝑇𝑝𝑀, then𝜑𝑝(𝑣1, ..., 𝑣𝑘) is (up to a factor)
the signed 𝑘-volume of that parallelepiped.

The Riemannian metric 𝑔 equips each tangent space with a natural notion of 𝑘-dimensional volume. If 𝜉 is a
decomposable unit 𝑘-vector (that is, an oriented 𝑘-plane with orthonormal basis 𝑒1, ..., 𝑒𝑘), then the induced
volume form 𝑑𝜇𝜉 satisfies

𝑑𝜇𝜉(𝑒1, ..., 𝑒𝑘) = 1. (1.6)

Given this, it makes sense to compare a 𝑘-form 𝜑 with the true geometric volume. The relevant measure is the
comass norm:

||𝜑𝑝||∗ = sup{𝜑𝑝(𝜉) ∶ 𝜉 ∈ Λ𝑘(𝑇𝑝𝑀), 𝜉 unit, simple, oriented}. (1.7)

Intuitively, |𝜑𝑝 ∗ | tells us how large 𝜑 can appear when tested against a unit 𝑘-plane. If 𝜑𝑝|∗ ≤ 1, then 𝜑 never
reports a number greater than the actual volume.
This is precisely the idea behind calibrations: special closed forms whose comass is at most one, and which exactly
match the volume on certain distinguished submanifolds.

1.2.1 Defining a Calibration

Let us present the formal definition of a calibration, which, as described informally, is a type of differential form
that ’never overestimates volume’.

Definition 1.2: Calibration

Let (𝑀, 𝑔) be a Riemannian manifold. A differential 𝑘-form 𝜂 ∈ Ω𝑘(𝑀) is called a calibration if:
1. 𝜂 is closed, 𝑑𝜂 = 0, and
2. for every point 𝑝 ∈ 𝑀 and every oriented orthonormal 𝑘-tuple (𝑒1, ..., 𝑒𝑘) ∈ 𝑇𝑝𝑀, we have

𝜂𝑝(𝑒1, ..., 𝑒𝑘) ≤ 1. (1.8)

Equivalently, |𝜂𝑝|∗ ≤ 1 for all 𝑝, where | ⋅ |∗ denotes the comass norm.

Example 1.1

Considerℝ𝑛 with its standard Euclidean metric. Any constant-coefficient 𝑘-form 𝜑 ∈ Λ𝑘(ℝ𝑛)∗ is closed. By
rescaling 𝜑 so that its comass norm is one, we obtain a calibration. Moreover, equality holds on at least one
𝑘-plane (namely, the one spanned by a wedge of basis vectors appearing in 𝜑).

Of course, we wish to use the definition of a calibration to single out submanifolds where this ’measuring device’
exactly matches the true Riemannian volume.
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Definition 1.3: Calibrated submanifold

Let 𝜂 be a calibration 𝑘-form on (𝑀, 𝑔). An oriented 𝑘-dimensional submanifold 𝑁 ⊂ 𝑀 is said to be cali-
brated by 𝜂 if the restriction of 𝜂 to 𝑁 agrees with the Riemannian volume form of 𝑁:

𝜂|𝑁 = Vol𝑁 (1.9)

Example 1.2

Any oriented 𝑘-plane in ℝ𝑛 can be calibrated. In coordinates, if 𝑃 = {𝑥 ∈ ℝ𝑛 ∶ 𝑥𝑘+1 = ⋯𝑥𝑛 = 0} with its
natural orientation, then the form

𝜂 = 𝑑𝑥1 ∧ ... ∧ 𝑑𝑥𝑘 (1.10)

is a calibration, and 𝑃 is calibrated by 𝜂.

Aside

In the next section, we shall provide some interesting examples of calibrations (e.g. Kähler, special Lagrangian,
associative, coassociative, Cayley), but frankly it doesn’t make sense to introduce these without first defining
holonomy. We shall see that calibrations appear naturally in manifolds with reduced holonomy, giving us
many examples.

Note that the calibration condition is purely algebraic on the tangent spaces of 𝑁. Thus, the problem of finding
calibrated submanifolds translates into solving a first-order non-linear system for the immersion of 𝑁 into𝑀, in
contrast with the second-order PDE of mean curvature for general minimal submanifolds.

1.2.2 Properties of CalibratedManifolds

The first proposition formalises an idea that we have previously alluded to, which is that calibrated submanifolds
are automatically minimal submanifolds. For simplicity, we shall consider the compact case, but the notion carries
to non-compact submanifolds as well.

Proposition 1.1

Let (𝑀, 𝑔) be a Riemannian manifold, 𝜑 be a calibration on𝑀, and 𝑁 a compact 𝜑-submanifold in𝑀. Then
𝑁 is volume-minimising in its homology class.

Proof. Let dim(𝑁) = 𝑘, [𝑁] ∈ 𝐻𝑘(𝑀,ℝ), and [𝜑] ∈ 𝐻𝑘(𝑀,ℝ) be the homology and cohomology class of 𝑁 and
𝜑. Then since 𝜑|𝑇𝑥𝑁 = Vol𝑇𝑥𝑁 for each 𝑥 ∈ 𝑁 by the fact it is a calibrated submanifold, one has that:

[𝜑] ⋅ [𝑁] = ∫
𝑥∈𝑁

𝜑|𝑇𝑥𝑁 = ∫
𝑥∈𝑁

Vol𝑇𝑥𝑁 = Vol(𝑁). (1.11)

Let 𝑁′ be any other compact 𝑘-submanifold of𝑀, with [𝑁′] = [𝑁] in 𝐻𝑘(𝑀,ℝ). Then since 𝜑|𝑇𝑥𝑁′ ≤ Vol𝑇𝑥𝑁′

as 𝜑 is a calibration, one has:

[𝜑] ⋅ [𝑁] = [𝜑] ⋅ [𝑁′] = ∫
𝑥∈𝑁′

𝜑|𝑇𝑥𝑁′ ≤ ∫
𝑥∈𝑁′

Vol𝑇𝑥𝑁′ = Vol(𝑁′). (1.12)

One can then conclude that Vol(𝑁) ≤ Vol(𝑁′). Thus, 𝑁 is volume-minimising in its homology class.
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