LECTURE SIX -

Schemes, Morphisms, and chosed subschemes

<u>Recap:</u>
· Why schemes
· Ringed space, docany ringed space
· Pre-scheauf, scheauf
· Morphisms of presheaves Tsheaves
· Stalks direct domets, scheaflefreation
· Abelian schemet, schemps
§ 5.3. MORPHISMS INTO AN AFFINE SCHEME
THEOREM: Let X be a scheme. Let A be a
THEOREM: Let X be a scheme. Let A be a ring. There is a natural bijection:
<u>THEOREM</u> : Let X be a scheme. Let A be a ring. There is a natural bijection: Hom _{sch} $(X, Spec(A)) = HomRings (A, OX (X))$
THEOREM: Let X be a scheme. Let A be a ring. There is a notural bijection: Hom _{sch} (X, Spec(A)) = Hom _{Rings} (A, O _X (X)) <u>Proof:</u> See Encagsrud & Outem!
THEOREM: Let X be a scheme. Let Abe a ring. There is a notherall bijection: Hom _{sch} (X, Special) = Hom _{Rings} (A, O _X (X)) <u>PROOF:</u> See Enungsruch & Other ! The particular, from this theorem we get
THEOREM: Let X be a scheme. Let Abe a ring. There is a notheral bijection: Hom _{sin} (X, Spec(A)) = Hom _{Rings} (A, O _X (X)) <u>Proof:</u> See Encagsrud & Othem! In particular, from this theorem we ged that thecategory of affine schemes is

J.E. A >> Spec(A) Deffines functor:

Spec : Rings -> Ally Sch

Each ring map le: A + B gets sends to (f, f[#]), which is a map between ringed spaces There is, in fract, a function which traves us in the apposite direction, T.

THEOREM: The Junctors Specond Pore, up to equivalence, mutually inverse - giving equivalence between Rings and AJJ Sch.

PROOF:

P · Spec = 1 Rings Given U: X → Y, a map between alleneschemes, is induced VIA unique ring map Gyly)→ O×lx) Applying Spec toues us back to f Spec Equivalent to 1 Allesch

§ 5.4. CLOSED SUBSCHIEMES:
U:= Open subsect up scheme X
(U, Ox lu) Is a scheme ! Nuhy ?
· Disitinguished open set of addine
scheme is all fre scheme
· This is because if X = Spec(R), U = Xy = >
(u, ox lu) = spec (Rg)
· Distinguished opensets of X contained in
U covers U
· so, (u, Ox lu) is covered by alling schemes
Less get specific: If the subset of the
scheme is open - we call this an OPEN
SUBSCHEME
Ty the subset is closed, we get a CLOSED
SUBSCHEME

Open subschemes - Understood survcture.

Closed subscheme -> More computicated!

scheme Y that is the specitrum of a

quotvent ring of R

Closed subscheme of X - Ideois in R

How to define for arbitrary scheme? Thoughts:

- · Replace ideal I described to closed subscheme of alline scheme by a sheaf
- · J · Filk JIDEALSHEAF Scheol, of ideals of Exgiven or distinguished open set V = X& of X by:

gires = 2 be

· Structure scheaf, On, identified by:

Y = Spec (R) / I

Let's formally define.

DEFINITION: Let X be ar bibrary schemp.

A CLOSED SUBSCHEME Y OU Y is a closed

Lopological subspace [YIC [XI, and a sheaf of rongs Gy, that is a quetient sheaf of the structure sheaf Ox by a quashicoherent scheaf of ideals, French that the intersection of Y with any officien open subset UCX is the closed subscheme associated to ideal Flut

QUASICOHERENT: Questicoherent shead of ideals JCOx on arbitrary scheme X is shead of ideals J such that, for each open subset us f X, Jlu is a questicoherentence of ot ideals on U.

Toke Step bach: crosed subscheme of scheme X is a scheme Z which is embedded as a closed subset Z S X Examples:

· Spec (l[u] / (x *)) Gives different subschemes of At Underlying topological spaces identical. T.E. A single pound Spectra homeomorphic Not Isomorphic as schemes - as Non- isomorphic structure sheavor • $|A_{u}^{\mu}| = \text{Spec}(A)$, $A = \ln E_{\lambda c_1, \lambda c_2, \lambda c_3, \lambda u}$ Ideals: T1 = (361, 362) $\mathbf{I}_2 = \{\mathbf{x}_1^{\mathbf{1}}, \mathbf{x}_2\}$ $T_3 = (x_1^{2}, x_1, x_2, x_2^{2}, x_1, x_2, x_3)$ Is. I. Is Have some rodical (x1, x2) gives rise to some closed subsect V (sc, sc) C /A th But Give different closed subschemes of the